

VON DEM JAHR 1887 AN GAB ES IN DER STADT SALZBURG EIN EIGENES UNTERNEHMEN ZUR STROMVERSORGUNG. 1899 LIEFERTE ERSTMALS EIN WASSERKRAFTWERK STROM INS NETZ.

Mit Hilfe einer Dampfmaschine produzierten die "Elektrizitätswerke Salzburg" ab dem Jahr 1887 Strom. Von ihrer Zentralstation am Makartplatz wurde die Energie vorerst an einige wenige Abnehmer verteilt. Der Bedarf stieg aber rasch an, sechs Jahre später war eine zweite Station am Elisabethkai notwendig. 1898 wurden bereits über 65.000 Kilowattstunden Strom erzeugt. Im Jahr darauf ging die Eichetmühle als erstes Wasserkraftwerk der Elektrizitätswerke Salzburg ans Netz.

ERSTES GROSSKRAFTWERK

Im Wiestal ging 1913 für damalige Verhältnisse ein "Großkraftwerk" in Betrieb. Das Stromnetz wurde weiter ausgebaut, die Straßenbeleuchtung eingeführt und auch Salzburger Randgemeinden wurden angeschlossen.

MEHR STROM FÜR DIE 20ER-JAHRE

Seit 1919 ist das Kraftwerk Hammer am Alm-Mühlbachkanal bei Oberalm in Betrieb. Im Krafthaus ist nach wie vor die ursprüngliche Turbine im Einsatz.

ENDE DES INSELBETRIEBES


Nach dem 2. Weltkrieg stieg mit dem Wiederaufbau der Strombedarf so stark an, dass eine Anbindung an das Landes- und Verbundnetz notwendig wurde. Der Bau des Umspannwerkes Bergheim-Hagenau war das Ende des "Strom-Inselbetriebes" in der Stadt Salzburg.

KRAFTWERKE IN DER

STADT SALZBURG

Mit moderner Architektur und ökologischen Besonderheiten zeichnen sich die Kraftwerke Sohlstufe Lehen und Rott mitten im Ballungsraum Salzburg aus.

Kraftwerk Sohlstufe Lehen

KRAFTWERK SOHLSTUFE LEHEN

Seit 2013 ist das Stützkraftwerk in Betrieb. das unterhalb der früheren Sohlstufe im Salzburger Stadtteil Lehen gebaut wurde. Das Hochwasser von 1959 hatte die Salzach-Sohle so weit eingetieft, dass in den Bereichen Hallein, Puch und Salzburg Sohlstufen angelegt werden mussten. Diese sollten helfen, die Fließgeschwindigkeit zu reduzieren. 2010 stand eine Sanierung der Sohlstufe in der Stadt an. Stattdessen beschloss die Salzburg AG, ein Stück flussabwärts ein Laufkraftwerk zu errichten.

MODERNER BLICKFANG

Im Rahmen eines Wettbewerbes setzte sich der Entwurf der Architekten Erich Wagner und Max Rieder durch. Das Kraftwerk Sohlstufe Lehen mit seinen markanten Betonschnäbeln auf den Wehrpfeilern und dem Krafthaus auf der linken Salzachseite liegt auf Höhe des Glanspitzes zwischen Lehen/Liefering und Itzling.

SALZACH DURCHGÄNGIG

Das Kraftwerk Sohlstufe Lehen stellte die von der EU geforderte Passierbarkeit der Salzach für Fische her. Dichtwände an den Salzachufern und ein unterirdisches Drainagesystem auf der rechten Salzachseite sorgen dafür, dass bei Hochwasser das Grundwasser langsamer ansteigt.

GRÜNZONE FÜR LEHEN

Auf dem Glanspitz-Areal entstand ein neues Naherholungsgebiet mit einem Begleitbach, großen Kinderspielflächen, Wiesen und Liegemöglichkeiten. Fußgänger und Radfahrer können über die Brücke am Kraftwerk die Salzach gueren.

KRAFTWERK ROTT

An der Saalach zwischen Salzburg und Freilassing lief erstmals 1950 ein Flusskraftwerk an. Das Kraftwerk Rott wurde während des 2. Weltkrieges gebaut. Es diente zur Stromproduktion und zur Sohlesicherung auf diesem Abschnitt der Saalach, über welchen eine Eisenbahnbrücke auf der Strecke Salzburg-Rosenheim-München verläuft. Die heutige Anlage aus dem Jahr 2004 produziert doppelt so viel Strom.

NEUE ANLAGE AB 2004

Nach über 50 Betriebsjahren war das Kraftwerk ans Ende seiner technischen Lebenszeit gekommen. Ein kleines Stück flussabwärts, fast auf Höhe des Grenzübergangs Freilassing, ging 2004 die Nachfolgeanlage ans Netz.

Die drei Wehrfelder sind je neun Meter breit. Das Krafthaus liegt auf Freilassinger Seite. Das Laufkraftwerk erzeugt etwa 27 Millionen Kilowattstunden Strom pro Jahr.

ÖKO-VORZEIGEPROJEKT

Im Zuge des Neubaus entstand eine moderne Fischwanderhilfe mit Schlitzpässen, durch welche die Saalach an dieser Stelle wieder durchgängig wurde. In das Bauprojekt flossen in Summe 20 Millionen Euro, was einen kräftigen Impuls für Umwelt und Wirtschaft darstellte.

Turbine Kraftwerk Rott

KRAFTWERK SOHLSTUFE LEHEN

Technische Daten	
Kraftwerkstype	Laufkraftwerk
Inbetriebnahme	2013
Engpassleistung	13.700 kW
Regel-Arbeitsvermögen	81 Mio. kWh
Gewässer	Salzach (Flußkilometer 63,75)
Einzugsgebiet	4.426 km ²
Ausbauwassermenge	250 m³/s

Stauraum, Wehranlage

Stauraum	Staufläche 28,9 ha
Stauziel	413,50 m ü. A.
Wehranlage	4 Wehrfelder
Abfuhrvermögen	3.200 m³/s

Maschinelle und elektrische Anlagen

Turbinen	2 Kaplan-Rohrturbinen mit horizontaler Welle
Laufrad-Durchmesser	4.000 m
Fallhöhe bei Ausbau-	6,60 m
wassermenge	
Nenn-Durchfluss	je 125 m³/s
Nennleistung	je 6.850 kW
Generatoren	2 Synchron-Generatoren,
	Stirnradgetriebe gekoppelt
Nenn-Scheinleistung	je 9.000 kVA
Energieableitung	ins Mittelspannungsnetz der Salzburg AG (30 kV)

KRAFTWERK ROTT

Technische Daten

Kraftwerkstype	Laufkraftwerk
Inbetriebnahme	2004
Engpassleistung	5.000 kW
Regel-Arbeitsvermögen	27,2 Mio. kWh
Gewässer	Saalach
Gesamt-Einzugsgebiet	1.145 km ²
Ausbauwassermenge	58,5 m ³ /s
Bruttofallhöhe	10,1 m
Bruttoralluone	10,1 m

Stauraum, Wehranlage

Stauraum	Staufläche 14,7 ha
Stauziel	415,80 müNN
Wehranlage	3 Wehrfelder (je 9 m Breite)
Abfuhrvermögen	1600 m ³ /s

Turbinen	2 Kaplan-Rohrturbinen mit horizontaler Welle
Laufrad-Durchmesser	3.600 m
Generatoren	2 Synchron-Generatoren, über Stirnradgetriebe gekoppelt
Nenn-Scheinleistung	je 3.125 kVA
Energieableitung	ins Mittelspannungsnetz der Salzburg AG (30 kV)

KRAFTWERKE IN HALLEIN

Die Laufkraftwerke Sohlstufe Hallein und Gamp nutzen die Kraft der Salzach optimal.

Kraftwerk Sohlstufe Hallein

KRAFTWERK SOHLSTUFE HALLEIN

Seit 1987 ersetzt ein Kraftwerk die in den 1960-iger Jahren erbaut Sohlstufe in Hallein. Anfang der 80er-Jahre entstand der Plan, die Sohlstufe Hallein in ein Kraftwerk umzubauen, um die künstliche Gefällestufe zur Stromgewinnung nutzen zu können. Die Anlage wurde direkt auf die bestehende Sohlstufe "aufgesetzt". Mit dem Kraftwerk entstand ein Fußgängersteg über die Salzach, der seither die Halleiner Altstadt mit dem Ortsteil Neualm verbindet. Um im Staubereich den Grundwasserspiegel halten zu können, wurden auf beiden Seiten der Salzach neun Absenkbrunnen errichtet.

HOCHWASSERSCHUTZ FÜR HALLEIN

Nach dem Hochwasser von 2002 wurde der Schutz im Halleiner Stadtgebiet verstärkt, indem man die Sohle der Salzach im Bereich der Sohlstufe weiter absenkte. Die Salzburg AG legte außerdem zwei von vier Wehrfeldern beim Kraftwerk um je zwei Meter tiefer und baute im Oberwasser Geschiebe-Leitschwellen ein, welche die Strömung direkt in Richtung Wehrfelder lenken. Dadurch kann die Salzach bei geöffneten Wehrklappen mehr Wasser abführen und Geschiebematerial leichter mittransportieren.

NEUE FISCHWANDERHILFE

Im Jahr 2010 wurde das Kraftwerk Sohlstufe

Hallein durch eine moderne Fischwanderhilfe mit Schlitzpässen für Fische passierbar gemacht.

KRAFTWERK GAMP

2005 erwarb die Salzburg AG das Kraftwerk Gamp von der Halleiner Papierfabrik und steigerte durch eine vollständige Erneuerung die Kapazität der Anlage auf das Zweieinhalbfache. Das alte Kraftwerk Gamp stammte aus dem Jahr 1926. Die von 2005 bis 2007 umfassend revitalisierte Anlage kann pro Jahr 53 Millionen Kilowattstunden Strom erzeugen. In die Anlage wurden rund 37 Millionen Euro investiert.

POSITIVE ÖKO-BILANZ

Der Salzachabschnitt im Stadtteil Gamp wurde durch die neue Anlage ökologisch aufgewertet: Es entstand ein Wanderweg für die Anrainer – und im naturnahen Bereich ein neuer Lebensraum für Wassertiere. Neben der modellhaften, 245 Meter langen Fischwanderhilfe gibt es ein 200 m² großes Amphibien-Laichgewässer und Kiesflächen für gefährdete Pflanzenarten wie das Uferreitgras. Auwälder und ehemalige Altarme der Salzach wurden in die Planung integriert.

HOCHWASSERSCHUTZ AUSGEBAUT

Der Hochwasserschutz gewinnt durch die neu angelegte Flutmulde im Bereich des Oberwassers an Effektivität. Im Unterwasser des Kraftwerkes bis zur Neumayr-Brücke wurden über 20 Steinbuhnen angelegt. Diese und die etwa 15 Meter breite Tiefenrinne in der Flussmitte erleichtern den Weitertransport des Geschiebes. Außerdem wurde dadurch die zuvor relativ geradlinige Salzach-Uferlinie besser strukturiert und die Salzach erhielt wieder ökologisch wertvolle Strukturen und Zonen, in denen Jungfische und kleinere Fischarten Unterstände und Lebensraum finden.

Kraftwerk Gamp

KRAFTWERK SOHLSTUFE HALLEIN

Technische Daten	
Kraftwerkstype	Laufkraftwerk
Inbetriebnahme	1987
Engpassleistung	11.700 kW
Regel-Arbeitsvermögen	61 Mio. kWh
Gewässer	Salzach (Flusskilometer 80,42)
Einzugsgebiet	3.945 km ²

220 m³/s

Stauraum, Wehranlage

Ausbauwassermenge

Stauraum	Staufläche 17,73 ha	
Stauziel	440,70 m ü. A.	
Wehranlage	4 Wehrfelder	
Abfuhrvermögen	2.200 m ³ /s	

Maschinelle und elektrische Anlagen

Turbinen	2 Kaplan-Rohrturbinen mit horizontaler Welle
Laufrad-Durchmesser	3.900 mm
Fallhöhe bei Ausbau-	6,70 m
wassermenge	
Nenn-Durchfluss	je 115 m³/s
Nennleistung	je 6.100 kW
Generatoren	2 Drehstrom-Generatoren,
	direkt mit der Turbinenwelle gekoppelt
Nenn-Scheinleistung	je 7.600 kVA
Energieableitung	ins Mittelspannungsnetz der Salzburg AG (30 kV)

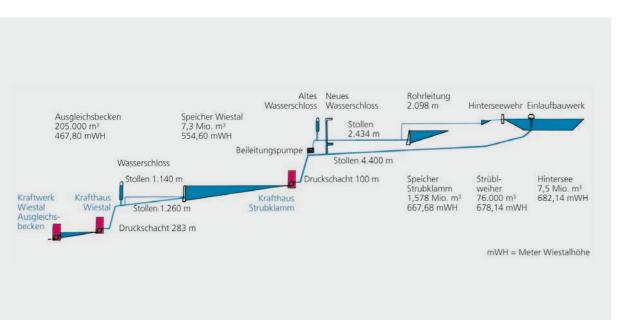
KRAFTWERK GAMP

Technische Daten

Laufkraftwerk
2007
8.580 kW (früher 3.700 kW)
53,38 Mio. kWh
Salzach (Flusskilometer 82,88)
3.682 km ²
175 m³/s

Stauraum, Wehranlage

Stauraum	Staulänge 1,6 km
Stauziel	448,72 m ü. A.
Wehranlage	4 Wehrfelder
Abfuhrvermögen	1.655 m ³ /s


Turbinen	2 Kaplan-Rohrturbinen mit horizontaler Welle
Fallhöhe bei Ausbau-	6,30 m
wassermenge	
Nenn-Scheinleistung	je 6.300 kW
Generatoren	2 Synchron-Generatoren,
	über Stirnradgetriebe gekoppelt
Nenn-Scheinleistung	je 10.500 kVA
Energieableitung	ins Mittelspannungsnetz der Salzburg AG (30 kV)

KRAFTWERKS KETTE

WIESTAL/STRUBKLAMM

Die Kraftwerke Strubklamm und Wiestal sowie das Wiestal-Ausgleichsbecken bilden zusammen eine dreistufige Kraftwerkskette.

Die Staustufen der Kraftwerkskette Wiestal/Strubklamm

Im Jahr 1913 ging das erste Kraftwerk am Wiestal-Stausee ans Netz. Mit drei Maschinensätzen und einer Leistung von 3.780 Kilowatt konnte die Anlage das Vierfache der damals in der gesamten Stadt Salzburg benötigten Strommenge erzeugen. Nach dem Ersten Weltkrieg stieg der Strombedarf aber rasch an. Diesen deckte man vorerst mit Hilfe zweier weiterer Maschinensätze ab.

ZWEITE STUFE STRUBKLAMM

Ein zusätzliches Kraftwerk im Bereich der Strubklamm war bereits beim Bau des Kraftwerkes Wiestal vorgesehen. 1924 nahm das Kraftwerk Strubklamm als Oberstufe den Betrieb auf. Es

Kraftwerk Wiestal – Wiestalsperre

nutzt Wasser aus dem Strubklammstausee und dem Hintersee zur Stromerzeugung. Bis 1944 deckten die Kraftwerke Strubklamm und Wiestal zusammen den gesamten Strombedarf in der Stadt Salzburg.

BEIDE STUFEN AUSGEBAUT

Gegen Ende des 2. Weltkrieges konnte die Kraftwerkskette im Wiestal den Strombedarf in der Stadt dann nicht länger allein decken. Ein Anschluss an das Landes- und Verbundnetz war notwendig. Mitte der 70er-Jahre wurde das Kraftwerk Wiestal generalsaniert, seine Leistung auf 28.000 Kilowatt ausgebaut und ein Ausgleichsbecken angelegt. 1983 ging das auf doppelte Leistung ausgebaute Kraftwerk Strubklamm in Betrieb.

AUSGLEICHSBECKEN ALS STAUSTUFE

Das Ausgleichsbecken im Wiestal war ursprünglich für die durchgehende Wasserführung im Almbach angelegt worden. Seit dem Jahr 2005 bildet dort das "Kraftwerk Wiestal Ausgleichsbecken" die dritte Staustufe der Kette. Das Kleinwasserkraftwerk kann die Fallhöhe zwischen Stauraum und Bach zur Stromproduktion nutzen.

KRAFTWERK STRUBKLAMM

Technische Daten

Speicherkraftwerk
1924 mit drei Maschinensätzen,
1983 Neubau mit zwei Maschinensätzen
15.000 kW
41,2 Mio. kWh
Hauptsystem: Hintersee, Brunnbach, Tauglbach
Nebensystem: Strüblweiher,
Strubklamm-Stausee
96 km²
18,4 m³/s

Maschinelle und elektrische Anlagen

Turbinen	2 Francis-Spiralturbinen mit vertikaler Welle
Laufraddurchmesser	1.030 mm
Nutz-Fallhöhe	115,2 m
Durchfluss	je 9,2 m³/s
Generatoren	2 Drehstrom-Synchron-Generatoren,
	direkt gekoppelt
Nennleistung	je 9.500 kW
Nenn-Scheinleistung	je 10.000 kVA
Energieableitung	über die Umspannstation Strubklamm
	ins Mittelspannungsnetz
	der Salzburg AG (30 kV)

KRAFTWERK WIESTAL

Technische Daten

Kraftwerkstype	Speicherkraftwerk
Inbetriebnahme	1913 (Maschinensatz 1–3),
	1918 (Maschinensatz 4),
	1939 (Maschinensatz 5),
	1977 (Ersatz durch zwei neue Maschinensätze)
Engpassleistung	28.000 kW
Regel-Arbeitsvermögen	53,2 Mio. kWh
Gewässer	Wiestal-Stausee, Mörtelbach, Schwarzaubach
Einzugsgebiet	175 km²
Ausbauwassermenge	39 m³/s

Maschinelle und elektrische Anlagen

Turbinen	2 Francis-Spiralturbinen mit vertikaler Welle
Laufraddurchmesser	1.530 mm
Nennfallhöhe	80,5 m
max. Durchfluss	je 19,5 m³/s
Nenn-Leistung	je 14.000 kW
Generatoren	2 Drehstrom-Synchron-Generatoren,
	direkt gekoppelt
Nenn-Scheinleistung	je 13.300 kVA
Energieableitung	über die Umspannstation Wiestal
	ins Mittelspannungsnetz
	der Salzburg AG (10/30 kV)

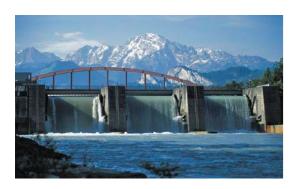
KRAFTWERK WIESTAL AUSGLEICHSBECKEN

Technische Daten

Kraftwerkstype	Laufkraftwerk
Inbetriebnahme	2005
Engpassleistung	216 kW
Regel-Arbeitsvermögen	1,19 Mio. kWh
Gewässer	Ausgleichsbecken
	Krafthaus Wiestal
Einzugsgebiet	185 km²
Ausgleichsbecken	Nutzinhalt 204.000 m³,
	Stauziel 467,80 m ü. A.,
	Dotierung 2-4,1 m ³ /s

Turbine	1 Kaplan-Turbine mit senkrechter Welle
Bruttofallhöhe	5 m
Ausbaudurchfluss	5,5 m³/s
Generator	Drehstrom-Synchron-Generator,
	über Lederriemen angetrieben
Nenn-Leistung	250 kW
Energieableitung	über die Umspannstation Wiestal
	ins Mittelspannungsnetz
	der Salzburg AG (10 kV)

Bei Puch-Urstein liegt das Kraftwerk, das anstelle einer notwendigen Sohlstufe in der Salzach gebaut wurde.


Das Kraftwerk Urstein befindet sich im Gemeindegebiet von Puch bei Hallein, ein Stück nördlich der Stelle, an welcher die Königsseeache in die Salzach mündet und die Tauernautobahn die Salzach quert. Die Lage war im Salzach-Stufenplan nach dem Hochwasser von 1959 festgelegt worden, welcher die weitere Sohleeintiefung der Salzach verhindern soll.

MEHRZWECK STATT SOHLSTUFE

1964 gab es erste Überlegungen, anstatt der Sohlstufe ein Flusskraftwerk zu errichten, 1971 ging die Anlage in Betrieb.

WASSER FÜR DIE AU

Von der Aufstauung der Salzach profitiert das gesamte Augebiet an dieser Stelle: Durch die Stabilisierung des Grundwasserspiegels entstanden Rückzugsgebiete für Wasservögel und sogar Biber siedelten sich wieder an. Das Naherholungsgebiet Königsseeache, die Stege und Treppelwege auf beiden Salzachufern sind bei Wanderern und Radfahrern beliebt. Im Rückstauraum des Kraftwerkes finden immer wieder internationale Ruderregatten statt.

KRAFTWERK URSTEIN

Technische Date

Laufkraftwerk
1971
22.000 kW
120 Mio. kWh
Salzach (Flusskilometer 75,06), Königsseeache
4.383 km²
250 m³/s
Staufläche 48,54 ha
434,00 m ü. A.
3 Wehrfelder
3.600 m ³ /s
ne Anlagen
ne Anlagen 2 Kaplan-Rohrturbinen
-
2 Kaplan-Rohrturbinen
2 Kaplan-Rohrturbinen 4.276 mm
2 Kaplan-Rohrturbinen 4.276 mm 11,15 m
2 Kaplan-Rohrturbinen 4.276 mm 11,15 m je 125 m³/s je 12.315 kW 2 Drehstrom-Synchron-Generatoren,
2 Kaplan-Rohrturbinen 4.276 mm 11,15 m je 125 m³/s je 12.315 kW 2 Drehstrom-Synchron-Generatoren,
2 Kaplan-Rohrturbinen 4.276 mm 11,15 m je 125 m³/s je 12.315 kW 2 Drehstrom-Synchron-Generatoren, direkt mit der Laufrad-Achse gekoppelt
2 Kaplan-Rohrturbinen 4.276 mm 11,15 m je 125 m³/s je 12.315 kW 2 Drehstrom-Synchron-Generatoren, direkt mit der Laufrad-Achse gekoppelt je 13.400 kVA ins Mittelspannungsnetz
2 Kaplan-Rohrturbinen 4.276 mm 11,15 m je 125 m³/s je 12.315 kW 2 Drehstrom-Synchron-Generatoren, direkt mit der Laufrad-Achse gekoppelt je 13.400 kVA ins Mittelspannungsnetz
2 Kaplan-Rohrturbinen 4.276 mm 11,15 m je 125 m³/s je 12.315 kW 2 Drehstrom-Synchron-Generatoren, direkt mit der Laufrad-Achse gekoppelt je 13.400 kVA ins Mittelspannungsnetz der Salzburg AG (30 kV)

KRAFT WERK EICHETMÜHLE

KRAFTWERK EICHETMÜHLE

Technische Daten

Kraftwerkstype	Laufkraftwerk
Inbetriebnahme	1899; 1908 maschineller Ausbau für den
	Betrieb der Lokalbahn, 1953 Außerbetrieb-
	nahme des Umformersatzes nach Stilllegung
	der Lokalbahn-Südstrecke
Engpassleistung	135 kW
Regel-Arbeitsvermögen	0,95 Mio. kWh
Gewässer	Almkanal
Ausbauwassermenge	6,2 m³/s

Maschillene und elek	u ische Amayen
Turbine	Francis-Schachtturbine, vertikale Welle
Laufrad-Durchmesser	2.050 mm
Nenn-Durchfluss	6,2 m³/s
Nennleistung	135 kW
Generatoren	Drehstrom-Synchron-Generator, horizontale Welle, über Kammrad und Triebling angetrieben, Nennleistung 165 kW
Energieableitung	über das Umspannwerk Eichetmühle ins Mittelspannungsnetz der Salzburg AG (10/30 kV)

KRAFTWERK

HAMMER

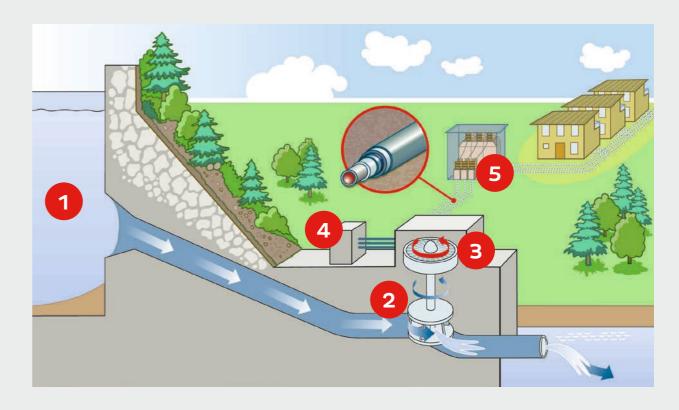
KRAFTWERK HAMMER

Technische Daten

Kraftwerkstype	Laufkraftwerk
Inbetriebnahme	1919
Engpassleistung	105 kW
Regel-Arbeitsvermögen	0,65 Mio. kWh
Gewässer	Alm-Mühlbachkanal
Ausbauwassermenge	4,4 m³/s

Maschinelle und elektrische Anlagen

Turbinen	Francis-Schachtturbine, vertikale Welle
Laufrad-Durchmesser	1.200 mm
Netto-Fallhöhe	3,5 m
Nenn-Durchfluss	4,4 m³/s
Nennleistung	105 kW
Generatoren	Drehstrom-Synchron-Generator mit horizontaler Welle, über ein Stirnrad-Getriebe angetrieben
Nenn-Scheinleistung	125 kVA
Energieableitung	über die Schaltstation Hammer ins Niederspannungsnetz der Salzburg AG (10/30 kV)


NATURSCHUTZ & WIRTSCHAFT

Die Berücksichtigung der berechtigten ökologischen Interessen, die nachhaltige Rekultivierung und umfangreiche Ausgleichsmaßnahmen sind heute Standard beim Kraftwerksbau. Beim Neu- und Umbau von Wasserkraftwerken arbeitet die Salzburg AG eng mit Experten für Raumplanung, Landschafts- und Naturschutz zusammen.

Im Zuge des Kraftwerkbaus Sohlstufe Lehen hat die Salzburg AG den Glanspitz neu gestaltet und ökologisch aufgewertet. Im Mündungsbereich der Glan in die Salzach erleichertert nun eine sogenannte "Pendelrampe" den Fischaufstieg. Durch die Fischwanderhilfe und das Umgehungsgerinne ist die Salzach für Fische erstmals seit dem Bau der Stohlstufe im Jahr 1968 auch in diesem Flussabschnitt wieder durchgängig.

Außerdem konnte durch einen neu angelegten Spielplatz und renaturierte Grünflächen mitten im dichtverbauten Stadtteil ein wertvolles Naherholungsgebiet entstehen.

SO WIRD AUS WASSERKRAFT STROM

- Gestautes Wasser wird zur Turbine geleitet.
- 2 Der Wasserdruck versetzt das Laufrad der Turbine in Drehbewegung, die auf den Generator übertragen wird.
- 3 Im Generator befestigte Elektromagneten rotieren an Kupferdrahtspulen vorbei, wodurch Spannung entsteht.
- Der Transformator wandelt die erzeugte Spannung zur Verteilung über die Stromnetze in Hochspannung (110 bis 380 kV) um.
- In Umspannwerken wird die Hochspannung wieder auf Mittelspannung (10 bis 30 kV) und in den Trafostationen auf haushaltsübliche 230/400V herunter transformiert.